CHAPTER - 16 UNDERSTANDING SHAPES

EXERCISE 16(A)

Question 1.

State which of the following are polygons:

If the given figure is a polygon, name it as convex or concave.

Solution:

Only Fig. (ii), (iii) and (v) are polygons.

Fig. (ii) and (iii) are concave polygons while

Fig. (v) is convex.

Question 2.

Calculate the sum of angles of a polygon with:

- (i) 10 sides
- (ii) 12 sides
- (iii) 20 sides
- (iv) 25 sides

Solution:

(i) No. of sides n = 10

sum of angles of polygon = $(n - 2) \times 180^{\circ}$

- $= (10 2) \times 180^{\circ} = 1440^{\circ}$
- (ii) no. of sides n = 12

sum of angles = $(n - 2) \times 180^{\circ}$

 $= (12 - 2) \times 180^{\circ} = 10 \times 180^{\circ} = 1800^{\circ}$

```
(iii) n = 20

Sum of angles of Polygon = (n - 2) \times 180^{\circ}

= (20 - 2) \times 180^{\circ} = 3240^{\circ}

(iv) n = 25

Sum of angles of polygon = (n - 2) \times 180^{\circ}

= (25 - 2) \times 180^{\circ} = 4140^{\circ}
```

Question 3.

Find the number of sides in a polygon if the sum of its interior angles is :

- (i) 900°
- (ii) 1620°
- (iii) 16 right-angles
- (iv) 32 right-angles.

Solution:

(i) Let no. of sides = n

Sum of angles of polygon = 900°

$$(n-2) \times 180^\circ = 900^\circ$$

$$n-2=\frac{900}{180}$$

$$n - 2 = 5$$

$$n = 5 + 2$$

$$n = 7$$

(ii) Let no. of sides = n

Sum of angles of polygon = 1620°

$$(n-2) \times 180^\circ = 1620^\circ$$

$$n-2=\frac{1620}{180}$$

$$n - 2 = 9$$

$$n = 9 + 2$$

$$n = 11$$

(iii) Let no. of sides = n

Sum of angles of polygon = 16 right angles = $16 \times 90 = 1440^{\circ}$

$$(n-2) \times 180^\circ = 1440^\circ$$

$$n-2=\frac{1440}{180}$$

$$n - 2 = 8$$

$$n = 8 + 2$$

$$n = 10$$

(iv) Let no. of sides = n

Sum of angles of polygon = $32 \text{ right angles} = 32 \times 90 = 2880^{\circ}$

$$(n-2) \times 180^{\circ} = 2880$$

$$n-2=\frac{2880}{180}$$

$$n - 2 = 16$$

$$n = 16 + 2$$

$$n = 18$$

Question 4.

Is it possible to have a polygon; whose sum of interior angles is:

- (i) 870°
- (ii) 2340°
- (iii) 7 right-angles
- (iv) 4500°

Solution:

(i) Let no. of sides = n

Sum of angles = 870°

$$(n-2) \times 180^{\circ} = 870^{\circ}$$

$$n-2=\frac{870}{180}$$

$$n-2=\frac{29}{6}$$

$$n = \frac{29}{6} + 2$$

$$n = \frac{41}{6}$$

Which is not a whole number.

Hence it is not possible to have a polygon, the sum of whose interior angles is 870°

(ii) Let no. of sides = n

Sum of angles = 2340°

$$(n-2) \times 180^{\circ} = 2340^{\circ}$$

$$n - 2 = \frac{2340}{180}$$

$$n - 2 = 13$$

$$n = 13 + 2 = 15$$

Which is a whole number.

Hence it is possible to have a polygon, the sum of whose interior angles is 2340°.

(iii) Let no. of sides = n

Sum of angles = $7 \text{ right angles} = 7 \times 90 = 630^{\circ}$

$$(n-2) \times 180^{\circ} = 630^{\circ}$$

$$n-2=\frac{630}{180}$$

$$n-2=\frac{7}{2}$$

$$n = \frac{7}{2} + 2$$

$$n = \frac{1}{2} + 2$$

$$n = \frac{11}{2}$$

Which is not a whole number. Hence it is not possible to have a polygon, the sum of whose interior angles is 7 right-angles.

(iv) Let no. of sides
$$= n$$

$$(n-2) \times 180^\circ = 4500^\circ$$

$$n-2=\frac{4500}{180}$$

$$n - 2 = 25$$

$$n = 25 + 2$$

$$n = 27$$

Which is a whole number.

Hence it is possible to have a polygon, the sum of whose interior angles is 4500°.

Question 5.

- (i) If all the angles of a hexagon are equal; find the measure of each angle.
- (ii) If all the angles of a 14-sided figure are equal; find the measure of each angle. **Solution:**
- (i) No. of sides of hexagon, n = 6

Let each angle be = x°

Sum of angles = $6x^{\circ}$

 $(n-2) \times 180^{\circ} = Sum \text{ of angles}$

 $(6-2) \times 180^{\circ} = 6x^{\circ}$

 $4 \times 180 = 6x$

$$x = \frac{4 \times 180}{6}$$

$$x = 120^{\circ}$$

- :. Each angle of hexagon = 120° Ans.
- (ii) No. of sides of polygon, n = 14

Let each angle = x°

 \therefore Sum of angles = $14x^{\circ}$

 $(n-2) \times 180^{\circ} = \text{Sum of angles of polygon}$

$$(14-2) \times 180^{\circ} = 14x$$

$$12 \times 180^{\circ} = 14x$$

$$x = \frac{12 \times 180}{14}$$

$$x=\frac{1080}{7}$$

$$x = \left(154\frac{2}{7}\right)^{\circ} \text{ Ans.}$$

Question 6.

Find the sum of exterior angles obtained on producing, in order, the sides of a polygon with :

- (i) 7 sides
- (ii) 10 sides
- (iii) 250 sides.

Solution:

(i) No. of sides n = 7

Sum of interior & exterior angles at one vertex = 180°

Question 7.

The sides of a hexagon are produced in order. If the measures of exterior angles so obtained are $(6x - 1)^\circ$, $(10x + 2)^\circ$, $(8x + 2)^\circ$ $(9x - 3)^\circ$, $(5x + 4)^\circ$ and $(12x + 6)^\circ$; find each exterior angle.

Solution:

Sum of exterior angles of hexagon formed by producing sides of order = 360°

$$(6x-1)^{\circ} + (10x+2)^{\circ} + (8x+2)^{\circ} + (9x-3)^{\circ}$$

$$+ (5x+4)^{\circ} + (12x+6)^{\circ} = 360^{\circ}$$

$$50x+10^{\circ} = 360^{\circ} - 10^{\circ}$$

$$50x = 360^{\circ} - 10^{\circ}$$

$$50x = 350^{\circ}$$

$$x = \frac{350}{50}$$

$$x = 7$$

.. Angles are

$$(6x-1)^{\circ}$$
; $(10x+2)^{\circ}$; $(8x+2)^{\circ}$; $(9x-3)^{\circ}$; $(5x+4)^{\circ}$ and $(12x+6)^{\circ}$
i.e. $(6\times7-1)^{\circ}$; $(10\times7+2)^{\circ}$; $(8\times7+2)^{\circ}$; $(9\times7-3)^{\circ}$; $(5\times7+4)^{\circ}$; $(12\times7+6)^{\circ}$
i.e. 41° ; 72° , 58° ; 60° ; 39° and 90°

Question 8.

The interior angles of a pentagon are in the ratio 4 : 5 : 6 : 7 : 5. Find each angle of the pentagon.

Solution:

Let the interior angles of the pentagon be 4x, 5x, 6x, 7x, 5x.

Their sum = 4x + 5x + 6x + 7x + 5x = 21x

Sum of interior angles of a polygon = $(n-2) \times 180^{\circ} = (5-2) \times 180^{\circ} = 540^{\circ}$

$$\therefore 27x = 540 \implies x = \frac{540}{27} \implies x = 20^{\circ}$$

.. Angles are
$$4 \times 20^{\circ} = 80^{\circ}$$

 $5 \times 20^{\circ} = 100^{\circ}$
 $6 \times 20^{\circ} = 120^{\circ}$
 $7 \times 20^{\circ} = 140^{\circ}$
 $5 \times 20 = 100^{\circ}$

Question 9.

Two angles of a hexagon are 120° and 160°. If the remaining four angles are equal, find each equal angle.

Solution:

Two angles of a hexagon are 120°, 160°

Let remaining four angles be x, x, x and x.

Their sum = $4x + 280^{\circ}$

But sum of all the interior angles of a hexagon

$$= (6-2) \times 180^{\circ}$$

= $4 \times 180^{\circ} = 720^{\circ}$

$$\therefore 4x + 280^{\circ} = 720^{\circ}$$

$$\Rightarrow$$
 4x = 720° - 280° = 440° \Rightarrow x = 110°

:. Equal angles are 110° (each)

Question 10.

The figure, given below, shows a pentagon ABCDE with sides AB and ED parallel to each other, and $\angle B : \angle C : \angle D = 5 : 6 : 7$.

- (i) Using formula, find the sum of interior angles of the pentagon.
- (ii) Write the value of ∠A + ∠E
- (iii) Find angles B, C and D.

Solution:

(i) Sum of interior angles of the pentagon

=
$$(5-2) \times 180^{\circ}$$

= $3 \times 180^{\circ} = 540^{\circ}$ [: sum for a polygon
of x sides = $(x-2) \times 180^{\circ}$]

$$\therefore \angle A + \angle E = 180^{\circ}$$

(iii) Let
$$\angle B = 5x$$
 $\angle C = 6x$ $\angle D = 7x$

$$\therefore 5x + 6x + 7x + 180^{\circ} = 540^{\circ}$$

$$(\angle A + \angle E = 180^{\circ})$$

Proved in (ii)

$$18x = 540^{\circ} - 180^{\circ}$$

$$\Rightarrow$$
 18x = 360° \Rightarrow x = 20°

$$\therefore \angle B = 5 \times 20^{\circ} = 100^{\circ}, \angle C = 6 \times 20 = 120^{\circ}$$

$$\angle D = 7 \times 20 = 140^{\circ}$$

Question 11.

Two angles of a polygon are right angles and the remaining are 120° each. Find the number of sides in it.

Solution:

Let number of sides = n

Sum of interior angles =
$$(n-2) \times 180^{\circ}$$

= $180n-360^{\circ}$
Sum of 2 right angles = $2 \times 90^{\circ}$
= 180°
Sum of other angles = $180n-360^{\circ}-180^{\circ}$
= $180n-540$

No. of vertices at which these angles are formed

$$= n - 2$$

$$\therefore \text{ Each interior angle} = \frac{180n - 540}{n - 2}$$

$$\therefore \frac{180n - 540}{n - 2} = 120^{\circ}$$

$$\frac{180n - 540}{n - 2} = 120^{\circ}$$

$$180n - 540 = 120n - 240$$

$$180n - 120n = -240 + 540$$

$$60n = 300$$

$$n = \frac{300}{60}$$

 $n = 5$

Question 12.

In a hexagon ABCDEF, side AB is parallel to side FE and \angle B : \angle C : \angle D : \angle E = 6 : 4 : 2 : 3. Find \angle B and \angle D.

Solution:

Given: Hexagon ABCDEF in which AB || EF

and $\angle B : \angle C : \angle D : \angle E = 6 : 4 : 2 : 3$.

To find : $\angle B$ and $\angle D$

Proof: No. of sides n = 6

:. Sum of interior angles = (n-2)×180°

$$= (6-2) \times 180^{\circ} = 720^{\circ}$$

: AB || EF (Given)

But $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F = 720^{\circ}$

(Proved)

$$\angle B + \angle C + \angle D + \angle E + \angle 180^{\circ} = 720^{\circ}$$

$$\therefore \angle B + \angle C + \angle D + \angle E = 720^{\circ} - 180^{\circ} = 540^{\circ}$$

Ratio = 6:4:2:3

Sum of parts = 6 + 4 + 2 + 3 = 15

$$\angle B = \frac{6}{15} \times 540 = 216^{\circ}$$

$$\angle D = \frac{2}{15} \times 540^{\circ} = 72^{\circ}$$

Hence $\angle B = 216^{\circ}$; $\angle D = 72^{\circ}$ Ans.

Question 13.

the angles of a hexagon are $x + 10^\circ$, $2x + 20^\circ$, $2x - 20^\circ$, $3x - 50^\circ$, $x + 40^\circ$ and $x + 20^\circ$. Find x.

Solution:

Sol. Angles of a hexagon are
$$x + 10^{\circ}$$
, $2x + 20^{\circ}$, $2x - 20^{\circ}$, $3x - 50^{\circ}$, $x + 40^{\circ}$ and $x + 20^{\circ}$
 \therefore But sum of angles of a hexagon = $(x - 2) \times 180^{\circ}$
= $(6 - 2) \times 180^{\circ} = 4 \times 180^{\circ} = 720^{\circ}$
But sum = $x + 10 + 2x + 20^{\circ} + 2x - 20^{\circ} + 3x$
 $-50^{\circ} + x + 40 + x + 20$
= $10x + 90 - 70 = 10x + 20$
 $\therefore 10x + 20 = 720^{\circ} \Rightarrow 10x = 720 - 20 = 700$
 $\Rightarrow x = \frac{700^{\circ}}{10} = 70^{\circ}$
 $\therefore x = 70^{\circ}$

Question 14.

In a pentagon, two angles are 40° and 60°, and the rest are in the ratio 1 : 3 : 7. Find the biggest angle of the pentagon.

Solution:

In a pentagon, two angles are 40° and 60° Sum of remaining 3 angles = 3 x 180° = $540^\circ - 40^\circ - 60^\circ = 540^\circ - 100^\circ = 440^\circ$ Ratio in these 3 angles =1 : 3 : 7 Sum of ratios =1 + 3 + 7 = 11 Biggest angle = $\frac{440 \times 7}{11}$ = 280°

EXERCISE 16(B)

Question 1.

Fill in the blanks:

In case of regular polygon, with:

no. of sides	each exterior angle	each interior angle
(i)8		
(ii)12		
(iii)	72°	
(iv)	45°	
(v)		150°
(vi)		140°

Solution:

no. of sides	each exterior angle	each interior angle
(i) 8	45°	135°
(ii) 12	30°	150°
(iii) 5	72°	108°
(iv) 8	45°	135°
(v) 12	30°	, 150°
(vi) 9	40°	140°

Explanation

(i) Each exterior angle =
$$\frac{360^{\circ}}{8}$$
 = 45°
Each interior angle = $180^{\circ} - 45^{\circ} - 135^{\circ}$

(ii) Each exterior angle =
$$\frac{360^{\circ}}{12}$$
 = 30°
Each interior angle = 180° - 30° = 150°

$$\therefore$$
 Number of sides = $\frac{360^{\circ}}{72^{\circ}}$ = 5

Also interior angle =
$$180^{\circ}$$
 - 72° = 108°

$$\therefore \text{ Number of sides } = \frac{360^{\circ}}{45^{\circ}} = 8$$

Interior angle =
$$180^{\circ} - 45^{\circ} = 135^{\circ}$$

(v) Since interior angle =
$$150^{\circ}$$

: Exterior angle =
$$180^{\circ} - 150^{\circ} = 30^{\circ}$$

$$\therefore \text{ Number of sides} = \frac{360^{\circ}}{30^{\circ}} = 12$$

$$\therefore$$
 Exterior angle = $180^{\circ} - 140^{\circ} = 40^{\circ}$

$$\therefore \text{ Number of sides } = \frac{360^{\circ}}{40^{\circ}} = 9$$

Question 2.

Find the number of sides in a regular polygon, if its each interior angle is :

- (i) 160°
- (ii) 135°
- (iii) $1\frac{1}{5}$ of a right-angle

Solution:

(i) Let no. of sides of regular polygon be n.

Each interior angle = 160°

$$\frac{(n-2)}{n} \times 180^{\circ} = 160^{\circ}$$

$$180n-360^{\circ} = 160n$$

$$180n-160n = 360^{\circ}$$

$$20n = 360^{\circ}$$

$$n = 18 \text{ Ans.}$$

(ii) No. of sides = n

Each interior angle = 135°

$$\frac{(n-2)}{n} \times 180^{\circ} = 135^{\circ}$$

$$180n-360^{\circ} = 135n$$

$$180n-135n = 360^{\circ}$$

$$45n = 360^{\circ}$$

$$n = 8 \text{ Ans.}$$

(iii) No. of sides = n

Each interior angle = $1\frac{1}{5}$ right angles = $\frac{6}{5} \times 90$ = 108°

$$\frac{(n-2)}{n} \times 180^{\circ} = 108^{\circ}$$

$$180n-360^{\circ} = 108n$$

$$180n-108n = 360^{\circ}$$

$$72n = 360^{\circ}$$

$$n = 5 \text{ Ans.}$$

Question 3.

Find the number of sides in a regular polygon, if its each exterior angle is :

- (i) $\frac{1}{3}$ of a right angle
- (ii) two-fifth of a right-angle.

Solution:

(i) Each exterior angle = $\frac{1}{3}$ of a right angle = $\frac{1}{3}$ x 90

$$\therefore \frac{360^{\circ}}{n} = 30^{\circ}$$

$$\therefore \qquad n = \frac{360^{\circ}}{30^{\circ}}$$

$$n = 12$$
 Ans.

(ii) Each exterior angle = $\frac{2}{5}$ of a right-angle

$$= \frac{2}{5} \times 90^{\circ}$$

$$=36^{\circ}$$

Let number of sides = n

$$\therefore \frac{360^{\circ}}{n} = 36^{\circ}$$

$$n = \frac{360^{\circ}}{36^{\circ}}$$

$$n = 10$$
 Ans.

Question 4.

Is it possible to have a regular polygon whose each interior angle is :

- (i) 170°
- (ii) 138°

Solution:

(i) No. of sides = n each interior angle = 170°

$$\frac{(n-2)}{n} \times 180^{\circ} = 170^{\circ}$$

$$180n - 360^{\circ} = 170n$$

$$180n - 170n = 360^{\circ}$$

$$10n = 360^{\circ}$$

$$n = \frac{360^{\circ}}{10}$$

$$n = 36$$

which is a whole number.

Hence it is possible to have a regular polygon whose interior angle is 170°.

(ii) Let no. of sides = n each interior angle = 138°

$$\therefore \frac{(n-2)}{n} \times 180^{\circ} = 138^{\circ}$$

$$180n-360^{\circ} = 138n$$

$$180n-138n = 360^{\circ}$$

$$42n = 360^{\circ}$$

$$n = \frac{360^{\circ}}{42}$$

$$n = \frac{60^{\circ}}{7}$$

Which is not a whole number.

Hence it is not possible to have a regular polygon having interior angle of 138°.

Question 5.

Is it possible to have a regular polygon whose each exterior angle is :

- (i) 80°
- (ii) 40% of a right angle.

Solution:

(i) Let no. of sides = n each exterior angle = 80°

$$\frac{360^{\circ}}{n} = 80^{\circ}$$

$$n = \frac{360^{\circ}}{80^{\circ}}$$

$$n = \frac{9}{2}$$

Which is not a whole number.

Hence it is not possible to have a regular polygon whose each exterior angle is of 80°.

(ii) Let number of sides = n

Each exterior angle = 40% of a right angle

$$= \frac{40}{100} \times 90$$

$$= 36^{\circ}$$

$$n = \frac{360^{\circ}}{36^{\circ}}$$

Which is a whole number.

Hence it is possible to have a regular polygon whose each exterior angle is 40% of a right angle.

Question 6.

n = 10

Find the number of sides in a regular polygon, if its interior angle is equal to its exterior angle.

Solution:

٠.,

Let each exterior angle or interior angle be = x°

$$x+x = 180^{\circ}$$
$$2x = 180^{\circ}$$
$$x = 90^{\circ}$$

Now, let no. of sides = n

$$\therefore$$
 each exterior angle = $\frac{360^{\circ}}{n}$

$$90^{\circ} = \frac{360^{\circ}}{n}$$

$$n = \frac{360^{\circ}}{90^{\circ}}$$

Question 7.

The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.

Solution:

Let interior angle $= x^{\circ}$

Exterior angle = $\frac{1}{3}$ x°

$$x + \frac{1}{3}x = 180^{\circ}$$

$$3x + x = 540$$

$$4x = 540$$

$$x = \frac{540}{4}$$

$$x = 135^{\circ}$$

$$\therefore \qquad \text{Exterior angle} = \frac{1}{3} \times 135^{\circ}$$
$$= 45^{\circ}$$

Let no. of sides = n

each exterior angle =
$$\frac{360^{\circ}}{n}$$

$$\therefore 45^{\circ} = \frac{360^{\circ}}{n}$$

$$\therefore \qquad n = \frac{360^{\circ}}{45^{\circ}}$$

$$n = 8$$
 Ans.

Question 8.

The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :

- (i) measure of each interior angle;
- (ii) measure of each exterior angle and
- (iii) number of sides in the polygon.

Solution:

Let exterior angle = x°

Interior angle =
$$5x^{\circ}$$

 $x + 5x = 180^{\circ}$
 $6x = 180^{\circ}$
 $x = 30^{\circ}$

Each exterior angle = 30°

Each interior angle = $5 \times 30^{\circ} = 150^{\circ}$

Let no. of sides = n

each exterior angle =
$$\frac{360^{\circ}}{n}$$

$$30^{\circ} = \frac{360^{\circ}}{n}$$

$$n = \frac{360^{\circ}}{30^{\circ}}$$

$$n = 12$$

Hence (i) 150° (ii) 30° (iii) 12

Question 9.

The ratio between the interior angle and the exterior angle of a regular polygon is 2 : 1. Find :

- (i) each exterior angle of the polygon;
- (ii) number of sides in the polygon

Solution:

Interior angle: exterior angle = 2:1

Let interior angle = $2x^{\circ}$ & exterior angle = x°

Question 10.

The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.

Solution:

Let exterior angle = x° & interior angle = $4x^{\circ}$

Question 11.

The sum of interior angles of a regular polygon is twice the sum of its exterior angles. Find the number of sides of the polygon.

Solution:

```
Let number of sides = n

Sum of exterior angles = 360^{\circ}

Sum of interior angles = 360^{\circ} x 2 = 720^{\circ}

Sum of interior angles = (n-2) x 180^{\circ}

720^{\circ} = (n-2) x 180^{\circ}

n-2=\frac{720}{180}

n-2=4

n=4+2

n=6
```

Question 12.

AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :

- (i) its each interior angle,
- (ii) its each exterior angle
- (iii) the number of sides in the polygon.

Solution:

$$AB = BC$$

$$[\angle s \text{ opp. to equal sides}]$$

(Given)

But
$$\angle BAC = 20^{\circ}$$

 $\therefore \angle BCA = 20^{\circ}$

$$\angle B + \angle BAC + \angle BCA = 180^{\circ}$$

$$\angle B + 20^{\circ} + 20^{\circ} = 180^{\circ}$$

$$\angle B = 180^{\circ} - 40^{\circ}$$

- (i) each interior angle = 140°
- (ii) each exterior angle = 180°- 140°

(iii) Let no. of sides = n

$$\therefore \frac{360^{\circ}}{n} = 40^{\circ}$$

$$n = \frac{360^{\circ}}{40^{\circ}} = 9,$$

$$n = 9$$

.: (i) 140° (ii) 9 Ans.

Question 13.

Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.

Solution:

Let number of sides of regular polygon = n

AB & DC when produced meet at P such that $\angle P = 90^{\circ}$

: Interior angles are equal.

$$\angle PBC = \angle BCP$$

But
$$\angle P = 90^{\circ}$$
 (Given)

$$\angle PBC + \angle BCP = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

$$\therefore$$
 $\angle PBC = \angle BCP$

$$= \frac{1}{2} \times 90^{\circ} = 45^{\circ}$$

Each exterior angle = 45° ..

$$\therefore 45^\circ = \frac{360^\circ}{n}$$

$$n=\frac{360^{\circ}}{45^{\circ}}$$

$$n=8$$
 Ans.

Question 14.

In a regular pentagon ABCDE, draw a diagonal BE and then find the measure of:

(i) ∠BAE

..

- (ii) ∠ABE
- (iii) ∠BED

Solution:

(i) Since number of sides in the pentagon = 5 Each exterior angle = $\frac{360}{5}$ = 72°

$$\angle BAE = 180^{\circ} - 72^{\circ} = 108^{\circ}$$

(ii) In
$$\triangle ABE$$
, $AB = AE$

But
$$\angle$$
BAE + \angle ABE + \angle AEB = 180°

$$108^{\circ} + 2 \angle ABE = 180^{\circ} - 108^{\circ} = 72^{\circ}$$

$$\Rightarrow \angle BED = 108^{\circ} - 36^{\circ} = 72^{\circ}$$

Question 15.

The difference between the exterior angles of two regular polygons, having the sides equal to (n - 1) and (n + 1) is 9° . Find the value of n.

Solution:

We know that sum of exterior angles of a polynomial is 360°

(i) If sides of a regular polygon = n - 1

Then each angle =
$$\frac{360^{\circ}}{n-1}$$

and if sides are n + 1, then

each angle =
$$\frac{360^{\circ}}{n+1}$$

According to the condition,

$$\frac{360^{\circ}}{n-1} - \frac{360^{\circ}}{n+1} = 9$$

$$\Rightarrow 360 \left[\frac{1}{x-1} - \frac{1}{x+1} \right] = 9$$

$$\Rightarrow 360 \left[\frac{n+1-n+1}{(n-1)(n+1)} \right] = 9$$

$$\Rightarrow \frac{2 \times 360}{n^2 - 1} = 9 \Rightarrow n^2 - 1 = \frac{2 \times 360}{9} = 80$$

$$\Rightarrow n^2 - 1 = 80 \Rightarrow n^2 = 1 - 80 = 0$$

$$\Rightarrow n^2 - 81 = 0$$

$$\Rightarrow (n)^2 - (9)^2 = 0$$

$$\Rightarrow (n+9)(n-9)=0$$

Either n + 9 = 0, then n = -9 which is not possible being negative,

or
$$n - 9 = 0$$
, then $n = 9$

$$\therefore n=9$$

Question 16.

If the difference between the exterior angle of a n sided regular polygon and an (n + 1) sided regular polygon is 12° , find the value of n.

Solution:

We know that sum of exterior angles of a polygon = 360° Each exterior angle of a regular polygon of 360°

$$n \text{ sides} = \frac{360^{\circ}}{n}$$

and exterior angle of the regular polygon of

$$(n+1) \text{ sides} = \frac{360^{\circ}}{n+1}$$

$$\therefore \frac{360^{\circ}}{n} - \frac{360^{\circ}}{n+1} = 12$$

$$\Rightarrow 360 \left[\frac{1}{n} - \frac{1}{n+1} \right] = 12 \Rightarrow 360 \left[\frac{n+1-n}{n(n+1)} \right] = 12$$

$$\Rightarrow \frac{30 \times 1}{n^2 + n} = 12 \Rightarrow 12 (n^2 + n) = 360^{\circ}$$

$$n + n$$

$$\Rightarrow n^2 + n = 36^{\circ}$$
(Dividing by 12)

$$\Rightarrow n^2 + n - 30 = 0$$

$$\Rightarrow n^2 + 6n - 5n - 30 = 0 \begin{cases} \because -30 = 6 \times (-5) \\ 1 = 6 - 5 \end{cases}$$

$$\Rightarrow n(n+6)-5(n+6)=0$$

$$\Rightarrow$$
 $(n+6)(n-5)=0$

Either n + 6 = 0, then n = -6 which is not possible being negative

or
$$n - 5 = 0$$
, then $n = 5$

Hence n = 5.

Question 17.

The ratio between the number of sides of two regular polygons is 3:4 and the ratio between the sum of their interior angles is 2:3. Find the number of sides in each polygon.

Solution:

Ratio of sides of two regular polygons = 3:4

Let sides of first polygon = 3n and sides of second polygon = 4n

Sum of interior angles of first polygon

$$= (2 \times 3n - 4) \times 90^{\circ} = (6n - 4) \times 90^{\circ}$$

and sum of interior angle of second polygon

$$= (2 \times 4n - 4) \times 90^{\circ} = (8n - 4) \times 90^{\circ}$$

$$\therefore \frac{(6n-4)\times 90^{\circ}}{(8n-4)\times 90^{\circ}} = \frac{2}{3}$$

$$\Rightarrow \frac{6n-4}{8n-4} = \frac{2}{3}$$

$$\Rightarrow 18n - 12 = 16n - 8$$

$$\Rightarrow 18n - 16n = -8 + 12$$

$$\Rightarrow 2n = 4$$

$$\Rightarrow n=2$$

.. No. of sides of first polygon

$$=3n=3\times2=6$$

and no. of sides of second polygon

$$=4n=4\times2=8$$

Question 18.

Three of the exterior angles of a hexagon are 40°, 51° and 86°. If each of the remaining exterior angles is x° , find the value of x.

Solution:

Sum of exterior angles of a hexagon = 4 x 90° = 360°

Three angles are 40°, 51° and 86°

Sum of three angle = $40^{\circ} + 51^{\circ} + 86^{\circ} = 177^{\circ}$

Sum of other three angles = $360^{\circ} - 177^{\circ} = 183^{\circ}$

Each angle is x°

$$3x = 183^{\circ}$$

$$X = \frac{183}{3}$$

Hence x = 61

Question 19.

Calculate the number of sides of a regular polygon, if:

- (i) its interior angle is five times its exterior angle.
- (ii) the ratio between its exterior angle and interior angle is 2:7.
- (iii) its exterior angle exceeds its interior angle by 60°.

Solution:

Let number of sides of a regular polygon = n

(i) Let exterior angle = x

Then interior angle = 5x

$$x + 5x = 180^{\circ}$$

$$=> 6x = 180^{\circ}$$

$$\Rightarrow x = \frac{180^{\circ}}{6} = 30^{\circ}$$

$$\therefore \text{ Number of sides } (n) = \frac{360^{\circ}}{30} = 12$$

(ii) Ratio between exterior angle and interior angle

$$= 2:7$$

Let exterior angle = 2x

Then interior angle = 7x

$$2x + 7x = 180^{\circ}$$

$$\Rightarrow 9x = 180^{\circ}$$

$$\Rightarrow x = \frac{180^{\circ}}{9} = 20^{\circ}$$

- \therefore Ext. angle = $2x = 2 \times 20^{\circ} = 40^{\circ}$
- $\therefore \text{ No. of sides} = \frac{360^{\circ}}{40} = 9$

(iii) Let interior angle = x

Then exterior angle = x + 60

$$x + x + 60^{\circ} = 180^{\circ}$$

$$\Rightarrow 2x = 180^{\circ} - 60^{\circ} = 120^{\circ} \Rightarrow x = \frac{120^{\circ}}{2} = 60^{\circ}$$

$$\therefore \text{ Number of sides} = \frac{360^{\circ}}{120^{\circ}} = 3$$

Question 20.

The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.

Solution:

Sum of interior angles = $3 \times Sum$ of exterior angles

Let exterior angle = x

The interior angle = 3x

$$x + 3x = 180^{\circ}$$

$$=> 4x = 180^{\circ}$$

$$=> x = \frac{180}{4}$$

 $=> x = 45^{\circ}$

$$=> x = 45^{\circ}$$

Number of sides = $\frac{360}{45}$ = 8

EXERCISE 16(C)

Question 1.

Two angles of a quadrilateral are 89° and 113°. If the other two angles are equal; find the equal angles.

Solution:

Let the other angle = x° According to given, $89^{\circ} + 113^{\circ} + x^{\circ} + x^{\circ} = 360^{\circ}$ $2x^{\circ} = 360^{\circ} - 202^{\circ}$ $2x^{\circ} = 158^{\circ}$ $x^{\circ} = \frac{158}{2}$ other two angles = 79° each

Question 2.

Two angles of a quadrilateral are 68° and 76°. If the other two angles are in the ratio 5: 7; find the measure of each of them.

Solution:

Two angles are 68° and 76° Let other two angles be 5x and 7x $68^{\circ} + 76^{\circ} + 5x + 7x = 360^{\circ}$ $12x + 144^{\circ} = 360^{\circ}$ $12x = 360^{\circ} - 144^{\circ}$ $12x = 216^{\circ}$ $x = 18^{\circ}$ angles are 5x and 7x i.e. 5 x 18° and 7 x 18° i.e. 90° and 126°

Question 3.

Angles of a quadrilateral are $(4x)^{\circ}$, $5(x+2)^{\circ}$, $(7x-20)^{\circ}$ and $6(x+3)^{\circ}$. Find:

- (i) the value of x.
- (ii) each angle of the quadrilateral.

Solution:

Angles of quadrilateral are,

Angles of quadriateral are,

$$(4x)^{\circ}$$
, $5(x+2)^{\circ}$, $(7x-20)^{\circ}$ and $6(x+3)^{\circ}$.
 $4x+5(x+2)+(7x-20)+6(x+3)=360^{\circ}$
 $4x+5x+10+7x-20+6x+18=360^{\circ}$
 $22x+8=360^{\circ}$
 $22x=360^{\circ}-8^{\circ}$
 $22x=352^{\circ}$
 $x=16^{\circ}$ Ans.
Hence angles are,
 $(4x)^{\circ}=(4\times16)^{\circ}=64^{\circ}$,
 $5(x+2)^{\circ}=5(16+2)^{\circ}=90^{\circ}$,
 $(7x-20)^{\circ}=(7\times16-20)^{\circ}=92^{\circ}$

 $6(x+3)^{\circ} = 6(16+3) = 114^{\circ}$ Ans.

Question 4.

Use the information given in the following figure to find :

(i) x

(ii) ∠B and ∠C

Solution:

∴
$$\angle A = 90^{\circ}$$
 (Given)
 $\angle B = (2x+4^{\circ})$
 $\angle C = (3x-5^{\circ})$
 $\angle D = (8x-15^{\circ})$
 $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$
 $90^{\circ} + (2x+4^{\circ}) + (3x-5^{\circ}) + (8x-15^{\circ}) = 360^{\circ}$
 $90^{\circ} + 2x+4^{\circ} + 3x-5^{\circ} + 8x-15^{\circ} = 360^{\circ}$
 $\Rightarrow 74^{\circ} + 13x = 360^{\circ}$
 $\Rightarrow 13x = 360^{\circ} - 74^{\circ}$
 $\Rightarrow 13x = 286^{\circ}$
 $\Rightarrow x = 22^{\circ}$
∴ $\angle B = 2x + 4 = 2 \times 22^{\circ} + 4 = 48^{\circ}$
 $\angle C = 3x - 5 = 3 \times 22^{\circ} - 5 = 61^{\circ}$
Hence (i) 22° (ii) $\angle B = 48^{\circ}$, $\angle C = 61^{\circ}$ Ans.

Question 5.

In quadrilateral ABCD, side AB is parallel to side DC. If $\angle A : \angle D = 1 : 2$ and $\angle C : \angle B = 4 : 5$

- (i) Calculate each angle of the quadrilateral.
- (ii) Assign a special name to quadrilateral ABCD

Solution:

Let
$$\angle A = x$$
 and $\angle B = 2x$

Let
$$\angle C = 4y$$
 and $\angle B = 5y$

$$\therefore \qquad \angle A + \angle D = 180^{\circ}$$

$$x + 2x = 180^{\circ}$$

$$3x = 180^{\circ}$$

$$x = 60^{\circ}$$

$$\angle D = 2x = 2 \times 60 = 120^{\circ}$$

Again $\angle B + \angle C = 180^{\circ}$

$$5y + 4y = 180^{\circ}$$

$$9y = 180^{\circ}$$

$$y = 20^{\circ}$$

$$\angle B = 5y = 5 \times 20 = 100^{\circ}$$

$$\angle C = 4y = 4 \times 20 = 80^{\circ}$$

Hence $\angle A = 60^{\circ}$; $\angle B = 100^{\circ}$; $\angle C = 80^{\circ}$ and $\angle D = 120^{\circ}$ Ans.

(ii) Quadrilateral ABCD is a trapezium because one pair of opposite side is parallel

Question 6.

From the following figure find;

(i) x

2.

- (ii) ∠ABC
- (iii) ∠ACD

Solution:

$$x = \frac{312}{12} = 26^{\circ}$$

(ii)
$$\angle ABC = 4x$$

$$4 \times 26 = 104^{\circ}$$

(iii)
$$\angle ACD = 180^{\circ}-4x-48^{\circ}$$

= $180^{\circ}-4\times26^{\circ}-48^{\circ}$
= $180^{\circ}-104^{\circ}-48^{\circ}$
= $180^{\circ}-152^{\circ} = 28^{\circ}$

(i) In Quadrilateral ABCD,

$$x + 4x + 3x + 4x + 48^{\circ} = 360^{\circ}$$

$$12x = 360^{\circ} - 48^{\circ}$$

$$12x = 312$$

Question 7.

Given : In quadrilateral ABCD ; $\angle C = 64^\circ$, $\angle D = \angle C - 8^\circ$; $\angle A = 5(a+2)^\circ$ and $\angle B = 2(2a+7)^\circ$.

Calculate ∠A.

Solution:

$$\angle C = 64^{\circ}$$
 (Given)

$$\angle D = \angle C - 8^{\circ} = 64^{\circ} - 8^{\circ} = 56^{\circ}$$

$$\angle A = 5(a+2)^{\circ}$$

$$\angle B = 2(2a+7)^{\circ}$$

Now
$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$5(a+2)^{\circ} + 2(2a+7)^{\circ} + 64^{\circ} + 56^{\circ} = 360^{\circ}$$

$$5a + 10 + 4a + 14^{\circ} + 64^{\circ} + 56^{\circ} = 360^{\circ}$$

$$9a + 144^{\circ} = 360^{\circ}$$

$$9a = 360^{\circ} - 144^{\circ}$$

$$9a = 216^{\circ}$$

$$a = 24^{\circ}$$

$$\angle A = 5 (a + 2) = 5(24+2) = 130^{\circ}$$

Question 8.

In the given figure : $\angle b = 2a + 15$ and $\angle c = 3a + 5$; find the values of b and c.

Solution:

Stun of angles of quadrilateral = 360° $70^{\circ} + a + 2a + 15 + 3a + 5 = 360^{\circ}$ $6a + 90^{\circ} = 360^{\circ}$ $6a = 270^{\circ}$ $a = 45^{\circ}$ $b = 2a + 15 = 2 \times 45 + 15 = 105^{\circ}$ $c = 3a + 5 = 3 \times 45 + 5 = 140^{\circ}$ Hence $\angle b$ and $\angle c$ are 105° and 140°

Question 9.

Three angles of a quadrilateral are equal. If the fourth angle is 69°; find the measure of equal angles.

Solution:

Let each equal angle be x° $x + x + x + 69^{\circ} = 360^{\circ}$

 $3x = 360^{\circ}-69$ 3x = 291 $x = 97^{\circ}$

Each, equal angle = 97°

Question 10.

In quadrilateral PQRS, $\angle P : \angle Q : \angle R : \angle S = 3 : 4 : 6 : 7$.

Calculate each angle of the quadrilateral and then prove that PQ and SR are parallel to each other

- (i) Is PS also parallel to QR?
- (ii) Assign a special name to quadrilateral PQRS.

Solution:

$$\therefore$$
 $\angle P : \angle Q : \angle R : \angle S = 3 : 4 : 6 : 7$
Let $\angle P = 3x$

Let

$$ZP = 30$$

$$\angle Q = 4x$$

$$\angle R = 6x$$

&

$$\angle S = 7x$$

$$\therefore \angle P + \angle Q + \angle R + \angle S = 360^{\circ}$$

$$3x + 4x + 6x + 7x = 360^{\circ}$$

$$20x = 360^{\circ}$$

$$x = 18^{\circ}$$

$$\therefore \qquad \angle P = 3x = 3 \times 18 = 54^{\circ}$$

$$\angle Q = 4x = 4 \times 18 = 72^{\circ}$$

$$\angle R = 6x = 6 \times 18 = 108^{\circ}$$

$$\angle S = 7x = 7 \times 18 = 126^{\circ}$$

$$\angle Q + \angle R = 72^{\circ} + 108^{\circ} = 180^{\circ}$$

 $\angle P + \angle S = 54^{\circ} + 126^{\circ} = 180^{\circ}$ or

Hence PQ || SR
As
$$\angle P + \angle Q = 72^{\circ}+54^{\circ} = 126^{\circ}$$

Which is ≠ 180°.

- .. PS and QR are not parallel.
- (ii) PQRS is a Trapezium as its one pair of opposite side is parallel.

Question 11.

Use the informations given in the following figure to find the value of x.

Solution:

```
Take A, B, C, D as the vertices of Quadrilateral and BA is produced to E (say). Since \angleEAD = 70° \angleDAB = 180° – 70°= 110° [EAB is a straight line and AD stands on it \angleEAD+ \angleDAB = 180°] 110° + 80° + 56° + 3x – 6° = 360° [sum of interior angles of a quadrilateral = 360°] 3x = 360° – 110° – 80° – 56° + 6° 3x = 360° – 240° = 120° x = 40°
```

Question 12.

The following figure shows a quadrilateral in which sides AB and DC are parallel. If $\angle A : \angle D = 4 : 5$, $\angle B = (3x - 15)^\circ$ and $\angle C = (4x + 20)^\circ$, find each angle of the quadrilateral ABCD.

Solution:

Let
$$\angle A = 4x$$

 $\angle D = 5x$
Since $\angle A + \angle D = 180^{\circ} [AB||DC]$
 $4x + 5x = 180^{\circ}$
 $=> 9x = 180^{\circ}$
 $=> x = 20^{\circ}$
 $\angle A = 4 (20) = 80^{\circ},$
 $\angle D = 5 (20) = 100^{\circ}$
Again $\angle B + \angle C = 180^{\circ} [AB||DC]$
 $3x - 15^{\circ} + 4x + 20^{\circ} = 180^{\circ}$
 $7x = 180^{\circ} - 5^{\circ}$
 $=> 7x = 175^{\circ}$
 $=> x = 25^{\circ}$
 $\angle B = 75^{\circ} - 15^{\circ} = 60^{\circ}$
and $\angle C = 4 (25) + 20 = 100^{\circ} + 20^{\circ} = 120^{\circ}$

Question 13.

Use the following figure to find the value of x

Solution:

The sum of exterior angles of a quadrilateral

$$\Rightarrow$$
 y + 80° + 60° + 90° = 360°

$$\Rightarrow$$
 y + 230° = 360°

$$=> y = 360^{\circ} - 230^{\circ} = 130^{\circ}$$

At vertex A,

$$\angle y + \angle x = 180^{\circ}$$
 (Linear pair)

$$x = 180^{\circ} - 130^{\circ}$$

$$=> x = 50^{\circ}$$

Question 14.

ABCDE is a regular pentagon. The bisector of angle A of the pentagon meets the side CD in point M. Show that \angle AMC = 90°.

Solution:

Given: ABCDE is a regular pentagon.

The bisector ∠A of the pentagon meets the side CD at point M.

To prove : ∠AMC = 90°

Proof: We know that, the measure of each interior angle of a regular pentagon is 108°.

$$\angle BAM = \frac{1}{2} \times 108^{\circ} = 54^{\circ}$$

Since, we know that the sum of a quadrilateral is 360°

In quadrilateral ABCM, we have

$$\angle BAM + \angle ABC + \angle BCM + \angle AMC = 360^{\circ}$$

$$54^{\circ} + 108^{\circ} + 108^{\circ} + \angle AMC = 360^{\circ}$$

$$\angle AMC = 360^{\circ} - 270^{\circ}$$

$$\angle AMC = 90^{\circ}$$

Question 15.

In a quadrilateral ABCD, AO and BO are bisectors of angle A and angle B respectively. Show that:

$$\angle AOB = \frac{1}{2} (\angle C + \angle D)$$

Solution:

Given : AO and BO are the bisectors of $\angle A$ and $\angle B$ respectively.

$$\angle 1 = \angle 4$$
 and $\angle 3 = \angle 5$ (i)

To prove : $\angle AOB = \frac{1}{2} (\angle C + \angle D)$

Proof: In quadrilateral ABCD

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\frac{1}{2}(\angle A + \angle B + \angle C + \angle D) = 180^{\circ}$$
....(ii)

Now in ∆AOB

$$\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$
(iii)

Equating equation (ii) and equation (iii), we get

$$\angle 1 + \angle 2 + \angle 3 = \angle A + \angle B + \frac{1}{2} (\angle C + \angle D)$$

$$\angle 1 + \angle 2 + \angle 3 = \angle 1 + \angle 3 + \frac{1}{2} (\angle C + \angle D)$$

$$\angle 2 = \frac{1}{2} \left(\angle C + \angle D \right)$$

$$\angle AOB = \frac{1}{2} (\angle C + \angle D)$$

Hence proved.